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Abstract 

A water reservoir’s operation should follow a rational policy to ensure adequate water provision for different purposes without 

adverse effects. However, it is not well-studied how to identify operational policies currently being implemented. This study 

establishes a new approach to identifying nominal release policies as implemented in a multi-purpose water reservoir. We chose 

Bukit Merah Reservoir (BMR), located in Perak State, Malaysia, as a study site to examine its release policies for meeting irrigation, 

municipal, and industrial water demands and for mitigating floods and environmental hazards. The operator of BMR releases the 

reservoir’s water into two primary irrigation canals, the Main Canal and the Selinsing Canal. Generalized additive models (GAMs) 

are applied to time series data observed at BMR to identify the annual dynamics of its water management. Operational policies for 

the release discharges into the two primary irrigation canals are assumed to be based on information on the time-of-year and the 

reservoir water level. First, a backfitting algorithm identifies each contributing function of the GAMs representing the release 

policies. Then, spurious oscillations in the functions are removed by total variation (TV) regularization (TVR) to obtain nominal 

release policies, which are quite reasonable in the sense of conventional reservoir management practice. Finally, the identified 

nominal release policies are utilized to examine shifts in the operation of BMR during the period from 2000 through 2011. The 

decomposition of release policies illustrates the two aspects of the irrigation demand’s annual patterns and the hydraulic 

structures’ functions. The spurious oscillations removed by TVR are considered to represent indecision by the reservoir operator. 
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1. Introduction 

In recent decades, climate change and socio-economic growth have had impacts on available water 

resources and food security in most parts of the world (Biemans et al. 2013; Lee, Bae 2015). Thus, more 

sophisticated management of existing water resources (Mereu et al. 2016; Wałęga et al. 2020), 

environments (Alam et al. 2018), and ecosystems (Yaegashi et al. 2018) is required to adapt to the impacts. 

A water reservoir’s operation should follow a rational policy to ensure adequate water provision for its 

various intended purposes without adverse effects. Figure 1 shows a conceptual diagram of a typical 

reservoir operation system in the context of feedback control theory. Hydrologic inputs, including 

precipitation, evapotranspiration, and runoff from the catchment, affect the reservoir’s water balance and 

the water supply to the command area (i.e. the downstream area serviced by the reservoir’s functions). The 

release from the reservoir as a control variable also contributes to the reservoir’s water balance and the 
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water supply to the command area. The operator’s role is to implement a policy determining the release 

discharges based on the reservoir’s water level and the water demand from the command area. However, a 

more sophisticated system of reservoir operation might also account for hydrologic inputs and/or 

possible conveyance losses as parts of the information on which the policy is based. 

 

Fig. 1. Conceptual block diagram of a reservoir operation system. 

Labadie (2004), Rani and Moreira (2010), and Ahmad et al. (2014) reviewed a variety of methods for 

computationally determining suitable reservoir operation policies. Stochastic dynamic programming (SDP) 

theory is the general framework to establish reservoir operation policies, as explored decades ago (Heidari 

et al. 1971; Tejada-Guibert et al. 1993, 1995; Yakowitz 1982). The SDP typically provides optimal 

operation policies with thresholds of opening valves or switching pumps (Nop et al. 2021; Unami, 

Mohawesh 2018; Unami et al. 2019b). However, reservoir operators generally do not accept such 

theoretically generated policies but instead rely on their empirical knowledge to make decisions when 

unexpected risks are involved (El-Shafie et al. 2014). Therefore, attention should be paid to the actual 

policies that may be identified from historical data (Giuliani et al. 2014). Turner et al. (2021) firstly 

attempted to inventory reservoir operation policies in the United States. 

This study aims at establishing a new approach to identifying nominal release policies implemented in a 

multi-purpose water reservoir. Bukit Merah Reservoir (BMR), located in the northern part of Perak State, 

Malaysia, was chosen as a study site. The water levels and release discharges of BMR were recorded daily 

from 2000 through 2011. Generalized additive models (GAMs; Chen, Tsay 1993) are applied for 

representing the operational policies for release discharges, which are assumed to have an annual period 

based  on the day of the year and the water levels (Unami et al. 2019a). The backfitting algorithm works 

well to identify each contributing function of the GAMs (Breiman, Friedman 1985). However, the release 

policies identified with that method include spurious oscillations, which are removed with total variation 

regularization (TVR), known as the Rudin–Osher–Fatemi model (ROF) for the initials of its three authors 

(Rudin et al. 1992). The ROF model contains a scale parameter dominating the discrepancy of the 



reconstructed data from the original data that includes spurious oscillations (Osher et al. 2005). Further 

application of TVR in agricultural water management was discussed in Fadhil and Unami (2021). The 

identified release policies, which are considered nominal because they have been smoothed and 

regularized, are utilized to examine shifts in the operation of BMR during the period. Several factors 

stemming from climate change and socio-economic growth are inferred to have burdened the operation 

of BMR with more demanding release policies. 

2. Materials and methods 

2.1. Study site and datasets 

Figure 2 shows the topography of BMR’s catchment and command areas, extracted from the Shuttle 

Radar Topography Mission (SRTM) digital elevation data (Farr et al. 2007), with the boundaries of sub-

catchments demarcated with white lines. The climatic zone is tropical rainforest with a mean annual 

rainfall of more than 3000 mm. The bimodal annual rainfall pattern enables paddy rice cultivation twice a 

year. BMR has a catchment area of 480 km2; it supplies irrigation water to the paddy fields of the Kerian 

Irrigation Scheme (KIS), covering an area of 236 km2, and urban water for municipal and industrial 

purposes to the Kerian, Larut, Matang, and Selama Districts. The catchment includes four river systems: 

Merah, Jelutong, Selarong, and Kurau Rivers (Ismail, Najib 2011), located between 04 51 N and 05 10 N 

latitude and 100 38 E to 101 00 E longitude. The region is primarily rural with numerous riverine villages 

established along the middle and lower reaches of the rivers. The land use in the areas with elevations 

lower than 50 m is predominantly for tree plantations such as oil palm, rubber, and coconut. At the same 

time, the surrounding steep mountain slopes are covered with rainforests. The rainfall characteristics in 

the catchment area have been modeled with a stochastic generator (Fadhil et al. 2017). Analysis using 

rainfall-runoff models with fractional derivatives has shown that the hydrologic response in the catchment 

area of the Kurau River is unstable (Unami et al. 2021). The KIS’s 236 km2 command area consists of 

low-lying lands between the Strait of Malacca and BMR. Two primary irrigation canals, the Main Canal 

and the Selinsing Canal, convey the irrigation water by gravity. The urban water is taken from the Selinsing 

Canal at a pumping station located 6.5 km downstream of BMR. Dor et al. (2011) conducted a detailed 

hydro-geological study on the Selinsing Canal. Approximately 61% of water consumed in the paddy fields 

of the KIS originates from BMR, and the rest is from rainfall (Hamidon et al. 2015). Urban demand 

depends on the local population and its economy. The Department of Irrigation and Drainage (DID, 

2011) projected that the growth rates of the population and economy in the state of Perak would decrease 

but remain positive until the year 2050. Intensive research on the operation of BMR has been conducted 

in the context of future climate change and SDP (Fadhil 2018). Besides the irrigation and urban demands, 

the operation of BMR needs to account for flood control and environmental hazards. There are two gated 

spillways of Ogee weir type with the same crest level, draining water from BMR to the original water 

course of the Kurau River, which meanders through the KIS with widths of 30-50 m.  



 

Fig. 2. The topography of the catchment and command areas of BMR, located in Peninsular Malaysia. 

The key dimensional parameters of BMR are summarized in Table 1. The dam embankment is at an 

elevation above the sea level (EL) of 11.28 m. The datum level is taken as the lowest level of the reservoir. 

The water level above the sea level is denoted by h (m). The storage volume of the reservoir when the 

water level is equal to h is denoted by V(h). The maximum capacity of the spillways at MWL is 565 m3/s. 

However, the bed slope of the Kurau River receiving the water from the spillways is about 1/10,000, 

implying insufficient discharge capacity. 

Table 1. Key dimensional parameters of BMR. 

Parameter Description 

Maximum water level (MWL) H (m) EL 10.25 

Flood control level (FCL) ηF (m) EL 9.75 

Normal water level (NWL) ηN (m) EL 8.69 

Spillway crest level (SCL) ηS (m) EL 8.14 

Intake gate crest level (IGL) ηG (m) EL 6.10 

Datum level η0 (m) EL 2.00 

Storage volume (106 m3) V(h) = 0.190 (h – η0)3.17 

A daily log of the operation of BMR in terms of water levels, rainfall depths, and release discharges into 

the two primary irrigation canals for the period from 2000 through 2011 was provided from the DID. The 

complete source data are available in a supporting information file. 

Hamidon et al. (2015) estimated the irrigation demand Qirr in the KIS for each month. The urban demand 

Qurb was assumed to be constant at 1.70 m3/s (Anwar 2010). Then, the sum of the irrigation demand Qirr 

and the constant urban demand Qurb becomes the total demand discharge QD for each month. Table 2 

summarizes the average monthly rainfall depths R during 2000-2011, the values of Qirr, Qurb, and QD, and 



the observed average monthly release discharge QR. However, it is noteworthy that the actual irrigation 

demand varies on a daily scale, according to the GIS-based estimation by Rowshon et al. (2003a-b). 

Table 2. Monthly parameter values relevant to the water balance of BMR. 

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rainfall depth 

R (mm) 
243.0 174.8 294.3 305.5 155.0 163.1 170.3 215.6 296.9 406.3 356.6 266.8 

Irrigation 
demand 

Qirr (m3/s) 

11.35 0.39 13.99 15.63 14.95 13.63 10.12 0.35 11.54 12.23 12.54 12.84 

Urban demand 

Qurb (m3/s) 
1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Total demand 

QD (m3/s) 
13.05 2.09 15.69 17.33 16.65 15.33 11.82 2.05 13.24 13.93 14.24 14.54 

Observed 
average release 
discharge 

QR (m3/s) 

5.74 4.18 24.07 28.91 27.18 13.86 4.06 2.79 23.32 29.88 28.52 14.92 

2.2. Generalized additive models for release discharges 

The water level of BMR at the beginning of day t is denoted by ht. The release discharge into the primary 

irrigation canal k on the day t of the year y is denoted by 𝑄𝑦,𝑡
𝑘 . Here, k = 0 and k = 1 indicate the Main 

Canal and the Selinsing Canal, respectively. It is assumed that the operator’s nominal policy uk (t, ht) for 

release discharge into canal k, based on the information of t and ht, is yearly invariant. We introduce an 

additive decomposition structure into uk (t, ht) to write it as a GAM: 

𝑢𝑘(𝑡, ℎ𝑡) = 𝑓𝑡𝑖𝑚𝑒
𝑘  (𝑡) +  𝑓𝑊𝐿

𝑘  (ℎ𝑡) + 𝐶𝑘  (1) 

where 𝑓𝑡𝑖𝑚𝑒
𝑘  and 𝑓𝑊𝐿

𝑘  are functions that may be nonlinear, and Ck is a constant. Representing the day t as: 

𝑡 = 2𝜋
𝑇ℎ𝑒 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟−1

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟
 , (2) 

the function 𝑓𝑡𝑖𝑚𝑒
𝑘  is assumed to be 2π-periodic. The objective here is to determine the functions 𝑓𝑡𝑖𝑚𝑒

𝑘  

and 𝑓𝑊𝐿
𝑘  minimizing the errors: 

𝜀𝑦,𝑡
𝑘 =  𝑄𝑦,𝑡

𝑘 − 𝑢𝑡(𝑡, ℎ𝑡) (3) 

in the sense of the least squares as well as the TV. 

2.3. Backfitting algorithm 

Firstly, the backfitting algorithm is applied for finding the functions to minimize the expected square error 

𝐸[𝜀𝑡,𝑦
𝑘 ]

2
 for all the observed data. The algorithm iteratively updates smoothing estimates 𝑓𝑡𝑖𝑚𝑒

𝑘  and 𝑓𝑊𝐿
𝑘  of 

𝑓𝑡𝑖𝑚𝑒
𝑘  and 𝑓𝑊𝐿

𝑘 , respectively. Histograms 𝜑𝑡𝑖𝑚𝑒
𝑘  and 𝜑𝑊𝐿

𝑘  are defined as: 



𝜑𝑡𝑖𝑚𝑒
𝑘 (𝑙) =  

1

|Ω𝑡(𝑙)|
 ∑ 𝑓𝑡𝑖𝑚𝑒

𝑘
𝑡∈Ω𝑡(𝑙) (𝑡),   Ω𝑡(𝑙) = {𝑡 |𝑡 ∈ (𝑙∆𝑡 −

∆𝑡

2
, 𝑙∆𝑡 +

∆𝑡

2
]} (4) 

and 

𝜑𝑊𝐿
𝑘 (𝑙) =  

1

|Ωℎ(𝑙)|
 ∑ 𝑓𝑊𝐿

𝑘
ℎ𝑡∈Ωℎ(𝑙) (ℎ𝑡),   Ωℎ(𝑙) = {ℎ𝑡 |ℎ𝑡 ∈ (𝑙∆ℎ −

∆ℎ

2
, 𝑙∆ℎ +

∆ℎ

2
]} (5) 

for integers l with the increments Δt and Δh, respectively. Then, with initial guesses 𝑓𝑡𝑖𝑚𝑒
𝑘 = 𝑓𝑊𝐿

𝑘 = 0 for 

all t and ht, the histograms are utilized to update the smoothing estimates as: 

𝑓𝑡𝑖𝑚𝑒
𝑘 (𝑡) = 𝑄𝑦,𝑡

𝑘 − 𝜑𝑊𝐿
𝑘 (𝑙) − 𝐶𝑘 ,   𝑡 ∈ (𝑙∆𝑡 −

∆𝑡

2
, 𝑙∆𝑡 +

∆𝑡

2
] (6) 

and 

𝑓𝑊𝐿
𝑘 (ℎ𝑡) = 𝑄𝑦,𝑡

𝑘 − 𝜑𝑡𝑖𝑚𝑒
𝑘 (𝑙) − 𝐶𝑘 ,   ℎ𝑡 ∈ (𝑙∆ℎ −

∆ℎ

2
, 𝑙∆ℎ +

∆ℎ

2
] (7) 

where Ck are taken as the averages of all 𝑄𝑦,𝑡
𝑘 . This algorithm is known to converge under appropriate 

conditions. 

2.4. TVR 

After the backfitting algorithm has converged, the TVR is applied to each 𝑓𝑡𝑖𝑚𝑒
𝑘  and 𝑓𝑊𝐿

𝑘  to remove 

spurious oscillations. The TVR operated for a generic oscillating function f over a domain Ω of x 

minimizes the functional J of u: 

𝐽 = ∫ |∇𝑢|
𝑡

Ω
𝑑Ω +

𝜆

2
∫ |𝑢 − 𝑓|2𝑑Ω

𝑖

Ω
 (8) 

where λ is the scale parameter of the ROF model, and ∇ = 𝜕/𝜕𝑥. The Euler-Lagrange equation for 

minimization of J in (8) is formally written as: 

∇ ∙ (
∇𝑢

|∇𝑢|
) + 𝜆(𝑓 − 𝑢) = 0. (9) 

We attempt to obtain an approximate solution to (9) by numerically solving the initial value problem of 

the singular diffusion equation: 

𝜕𝑢

𝜕𝑡
= ∇ ∙ (

∇𝑢

|∇𝑢|
) + 𝜆(𝑓 − 𝑢),   𝑢 = 𝑓 𝑎𝑡 𝑡 = 0 (10) 

It is assumed that the values of 𝑓 are determined at n different points of Ω. Let those points be xi for  

i = 0, 1, …, n – 1 such that x0 < x1 < … < xn–1. Applying the standard Galerkin finite element scheme 

with piecewise linear bases to (10) results in the initial value problem of the ordinary differential equation: 



d𝐮

d𝑡
= 𝑀−1𝐴𝛔 + 𝜆(𝐟 − 𝐮),   𝐮 = 𝐟 𝑎𝑡 𝑡 = 0 (11) 

where 𝐮 ∈ ℝ𝑛 is the vector whose i th entry is 𝑢�̂�, which is the approximation of u at xi, 𝐟 ∈ ℝ𝑛 is the 

vector whose i th entry is 𝑓at xi, 𝛔 ∈ ℝ𝑛−1 is the vector whose i th entry is the sign of �̂�𝑖+1 − �̂�𝑖 ,  

𝑀 ∈ ℝ𝑛×𝑛 is the mass matrix, and 𝐴 ∈ ℝ𝑛×(𝑛−1) is the stiffness matrix. Two types of boundary 

conditions are considered: periodic and Neumann. For the periodic boundary condition, the matrices 

become: 

1 1 1 0 0 1

1 0 2 0 2 1

1 1 1 1

2 3 1 3 1 2

0 1 1 2 0 2

0 0
3 6 6

0
6 3 6

0 0

6 3 6

0 0

0
6 3 6

0 0
6 6 3

n n

i i i i i i

n n n n n n

n n n n

x x x x x x

x x x x x x

x x x x x x
M

x x x x x x

x x x x x x

− −

− + − +

− − − − − −

− − − −

− − − 
 
 

− − − 
 
 
 
 − − −

=  
 
 
 

− − − 
 
 − − −
 
 

  (12) 

and 

1 0 0 1

1 0

0 1

1 0

0 1

1 0 0 1

A

− 
 
− 
 

=  
− 

 
  − 

 (13) 

For the Neumann boundary condition, the matrices become: 



1 0 1 0

1 0 2 0 2 1

1 1 1 1

2 3 1 3 1 2

1 2 1 2

0 0 0
6 6

0
6 3 6

0 0

6 3 6

0 0

0
6 3 6

0 0 0
6 6

i i i i i i

n n n n n n

n n n n

x x x x

x x x x x x

x x x x x x
M

x x x x x x

x x x x

− + − +

− − − − − −

− − − −

− − 
 
 

− − − 
 
 
 
 − − −

=  
 
 
 

− − − 
 
 − −
 
 

 (14) 

and 

1 0 0 0

1 0

0 1

1 0

0 1

0 0 0 1

A

 
 
− 
 

=  
− 

 
  − 

. (15) 

3. Results 

3.1. Identification of nominal release policies and reconstruction of release discharges 

Two five-year subperiods, 2001-2005 and 2007-2011, were extracted from the whole period 2000-2011. 

Consecutive use of the backfitting algorithm and the TVR identified nominal release policies from the 

observed release discharges during each of the two subperiods. The increments are chosen as ∆𝑡 =
2𝜋

365.25
 

(rad) and Δh = 0.01 (m). Five cases of the scale parameter λ = 10–i/2 (i = 0, 1, 2, 3, 4) are considered. 

The numerical solution of the initial value problem (10) successfully converges to a steady state for each 

case of λ. Figures 3 and 4 compare the processes of TVR applied to 𝑓𝑡𝑖𝑚𝑒
0  for the Main Canal during the 

two subperiods 2001-2005 and 2007-2011. Figures 5 and 6 compare the processes of TVR applied to 𝑓𝑊𝐿
0  

for the Main Canal during the two subperiods. The value of C 0, which is equal to the average of all release 

discharges to the Main Canal, is 12.01 and 15.60 for the subperiods 2001-2005 and 2007-2011, 

respectively. Then, release discharges to the Main Canal are reconstructed with the nominal release 

policies identified from the observed data during the two subperiods, as shown in Figures 7 and 8. For 

example, with λ = 10–2, Figures 3 and 5 indicate that the values of 𝑓𝑡𝑖𝑚𝑒
0  and 𝑓𝑊𝐿

0  are –8.29 and –0.28, 

respectively, if the water level is at SCL (EL 8.14) on January 1st during the subperiod 2001-2005. In that 

case, the nominal release discharge becomes equal to 𝑓𝑡𝑖𝑚𝑒
0 + 𝑓𝑊𝐿

𝑜 + 𝐶0 = −8.29 − 0.28 + 12.01 =



3.44 (m3/s). Figures 9-13 show the results similarly computed for the Selinsing Canal as in Figure 3 

through Figure 8 for the Main Canal. The value of C 1, which is equal to the average of all release 

discharges to the Selinsing Canal, is 6.32 and 6.86 for the subperiods 2001-2005 and 2007-2011, 

respectively. 

 

Fig. 3. The process of TVR applied to the function of time for the Main Canal during the subperiod 2001-2005. 

 

Fig. 4. The process of TVR applied to the function of time for the Main Canal during the subperiod 2007-2011. 



 

Fig. 5. The process of TVR applied to the function of WL for the Main Canal during the subperiod 2001-2005. 

 

Fig. 6. The process of TVR applied to the function of WL for the Main Canal during the subperiod 2007-2011. 



 

Fig. 7. Reconstructed release discharges to the Main Canal with the 2001-2005 policies. 

 

Fig. 8. Reconstructed release discharges to the Main Canal with the 2007-2011 policies. 



 

Fig. 9. The process of TVR applied to the function of time for the Selinsing Canal during the subperiod 2001-2005. 

 

Fig. 10. The process of TVR applied to the function of time for the Selinsing Canal during the subperiod 2007-2011. 

 

Fig. 11. The process of TVR applied to the function of WL for the Selinsing Canal during the subperiod 2001-2005. 



 

Fig. 12. The process of TVR applied to the function of WL for the Selinsing Canal during the subperiod 2007-2011. 

 

Fig. 13. Reconstructed release discharges to the Selinsing Canal with the 2001-2005 policies. 

 

Fig. 14. Reconstructed release discharges to the Selinsing Canal with the 2007-2011 policies. 

3.2. Choice of the scale parameter 

The daily oscillations in 𝑓𝑡𝑖𝑚𝑒
𝑘  and 𝑓𝑊𝐿

𝑘  are successfully removed with TVR, while the discrepancy of 𝑓𝑡𝑖𝑚𝑒
𝑘  

and 𝑓𝑊𝐿
𝑘  from them becomes large as the scale parameter λ becomes small. The TV in the reconstructed 

release discharges tends to decrease for smaller λ. Under the assumption that the release policies are based 



on the information of t and ht, the nominal release policies identified by the large-scale parameter λ = 1, 

are well representative of t and ht, and thus, considered the most reasonable and realistic. 

4. Discussions 

4.1. Comparison of the two subperiods 

The comparison between the observed and the reconstructed release discharges during the whole period 

validates the release policies identified from the data during each of the two subperiods. Significant 

increases in the peaks and the TV of the observed release discharges in both canals can be seen in 2009-

2011. Consequently, the reconstructed release discharges with the 2001-2005 policies barely approximate 

the observed ones in 2009-2011. This indicates that the operator changed the release policies from the 

subperiod 2001-2005 to the subperiod 2007-2011.  

Referring again to Figure 1, the variable hydrological input, which is under the considerable influence of 

climate change, is considered the primary cause of changes in the release policies controlling the water 

balance in the reservoir to satisfy the water demand. 

The changes in the functions 𝑓𝑡𝑖𝑚𝑒
𝑘  from the subperiod 2001-2005 to the subperiod 2007-2011 imply the 

shifts in the actual irrigation demand’s annual patterns, which are susceptible to rapidly developing 

agronomic practices such as the choice of varieties to adapt the climate change and to meet the increasing 

food demand. In the Main canal (k = 0), the two peaks of early-March through early-May and early-

September through late-October shifted to mid-March through late-May and mid-September through 

early-December, respectively. In the Selinsing canal (k = 1), the two peaks of early May through late June 

and late October through late December shifted to mid-April through mid-June and early-November 

through mid-January, respectively. As a result, May became the most critical month in the subperiod 2007-

2011, having the least rainfall and the overwrapping peaks of the release discharges in the two primary 

irrigation canals. This increasing criticality of May in the water balance of BMR supports the simulation-

based prediction by Hamidon et al. (2015). Furthermore, it is noteworthy that the change in rainfall 

patterns between the two subperiods in the catchment area of BMR is just a symptom of catastrophic 

regime shifts in the coming decades, according to the recent climatological studies using GCMs (Adib et 

al. 2020; Adib, Harun 2022; Adib et al. 2022). 

The function 𝑓𝑊𝐿
0  for the Main canal is mostly monotone increasing with respect to ht, and its increment 

was amplified from the subperiod 2001-2005 to the subperiod 2007-2011. The function 𝑓𝑊𝐿
1  for the 

Selinsing canal was small for the higher water levels during the subperiod 2001-2005 but became not so 

much during the subperiod 2007-2011. In other words, the two primary irrigation canals became more 

utilized for draining excess water from BMR in the subperiod 2007-2011 than in the subperiod 2001-2005. 

This allocation of the two primary irrigation canals for the drainage purpose might be attributed to the 

small capacity of Kurau River, which cannot manage the discharges required for reasonable flood control. 

  



4.2. Comparison with other approaches 

The first key feature of the approach developed here is to decompose a release policy into possibly 

singular functions of a single independent variable with the additive structure, unlike the standard 

procedure identifying release policies as quite regular functions of multiple independent variables (Turner 

et al. 2021). As discussed in the previous subsection, the decomposition of release policies illustrates the 

two aspects of the irrigation demand’s annual patterns and the hydraulic structures’ functions. 

The second key feature is the TVR applied to the decomposed possibly singular functions, breaking 

through a widespread obsession that policy identification is “to minimize some distance metric between 

historical releases and modeled ones,” as in Giuliani et al. (2014). This study is the first to succeed in 

quantitatively treating the indecisive attitude of a reservoir operator as the spurious oscillations to be 

removed with the TVR. The release policies extracted with the TVRs are the nominal parts. Overgaard 

(2019) provides mathematical proof to endorse the ROF model in one dimension used in this study for 

TVR. However, the lack of an established method to choose the best scale parameter λ is a practical 

limitation of this approach. A follow-up study shall be conducted to validate the λ values with the 

empirical knowledge of the reservoir operator. 

A sophisticated approach is being developed to combine the backfitting algorithm with TVR (Yang, Tan 

2018). Nevertheless, our approach, opting for the sequential use of the two procedures, is advantageous 

because it is not computationally demanding. 

5. Conclusions 

The consecutive use of the backfitting algorithm and TVR successfully identified the nominal release 

policies implemented in BMR during each of the two subperiods as the GAMs. The additive structure 

decomposed the varying parts of the nominal release policies into the two functions. The scale parameter 

of the TVR controlling the removal of spurious oscillations should be chosen so that the nominal release 

policies are sensitive to the time and water levels. The results have been utilized to compare the two 

subperiods, indicating the significant changes in the operator’s release policies. The rapidly developing 

agronomic practices and the insufficient discharge capacity of the Kurau River receiving the water released 

from the spillways might be seriously burdening the operation of BMR. We have also addressed the 

situation in another study (Fadhil 2018), so that the reservoir operator is aware of future hydro-

meteorological information, and deducing optimal release policies of BMR based on the SDP theory. 
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